JTIE 2015, 7(2):45-54 | 10.5507/jtie.2015.017

DYNAMIC GEOMETRY ENVIRONMENTS AS COGNITIVE TOOL IN MATHEMATIC EDUCATION

Vladimír POLÁŠEK, Lubomír SEDLÁČEK
Univerzita Tomáše Bati ve Zlíně

In this paper we deal with a possibility of the application of dynamic and interactive geometry software in the mathematics teaching at our schools. We offer their brief characteristics and describe their integration among cognitive computing technologies. The greater attention is paid to GeoGebra Software in order to show its specific use as a cognitive tool. We describe the importance and the role of dynamic geometry programs in the discovery of new knowledge by the experimentation and manipulation of the interactive construction. Each phase of this process we generally define and then illustrate with a specific example.

Keywords: cognitive technology, dynamic and interactive geometry, GeoGebra, experiment, hypothesis, verification, proof

Accepted: December 8, 2015; Prepublished online: December 10, 2015; Published: December 22, 2015

Download citation

References

  1. Abdelfatah, H. A. (2011). Story-based Dynamic Geometry Approach to Improve Attitudes toward Geometry and Geometric Proof. The International Journal on Mathematics Education, Vol. 43, No. 3, 441-450. ISSN 1863-9704. Go to original source...
  2. Cabri efficiency. CABRILOG Innovative Maths Tools. [online]. © 2009 [cit. 2015-11-12]. Retrieved from http://www.cabri.com/educative-software.html
  3. Dale, E. (1969). Audiovisual methods in teaching. New York: Dryden Press.
  4. Gillis, J. M. (2005). An Investigation of Student Conjectures in Static and Dynamic Geometry Environments. Auburn : Auburn University. Dissertation. 171 p. Retrieved from http://etd.auburn.edu/handle/10415/854.
  5. Heczko, M. (2013). Využití geometrických aplikací ve školské matematice. [online], 2001. Retrieved from http://trilian.ujep.cz/svoc/2013/k6/Heczko.pdf.
  6. Gergelitsová, Š. (2011). Počítač ve výuce nejen geometrie průvodce GeoGebrou. Praha: Generation Europe. ISBN 978-80-904974-3-6.
  7. Heid, M. K. (1997). The technological revolution and the reform of school mathematics. American Journal of Education, Vol. 106, No. 1, 5 -61. Go to original source...
  8. Hejný, M. & Kuřina, F. (2001). Dítě, škola a matematika. Praha: Portál. ISBN 80-7178-581-4.
  9. Hejný, M. & kol. (1989). Teória vyučování matematiky 2. Bratislava: SPN. ISBN 80-08-00014-7.
  10. Laborde, C., Kynigos, C., Hollebrands, K. and Strässer, R. (2006). Teaching
  11. and Learning Geometry with Technology. Handbook of Research on the
  12. Psychology of Mathematics Education: Past, Present and Future, A.
  13. Gutiérrez, P. Boero (eds.), p. 275-304, Sense Publishers.
  14. Pea, R. (1987). Cognitive technologies in mathematics education. In A.H. Schoenfeld
  15. (Ed.), Cognitive science and mathematics education Hillsdale, NJ:
  16. Erlbaum, 89-122.
  17. Robová, J. (2012). Výzkumy vlivu některých typů technologií na vědomosti a dovednosti žáků v matematice. Scientia in educatione 3(2), 79-106. ISSN 1804-7106.
  18. Robová, J. (2013). Role programů dynamické geometrie při objevování a dokazování hypotéz. In Sborník příspěvků 6. konference Užití počítačů ve výuce matematiky. Katedra matematiky, Pedagogická fakulta Jihočeská univerzita v Českých Budějovicích, 296 - 304. ISBN 978-80-7394-448-3
  19. Thagard, P. (2001). Úvod do kognitivní vědy. Praha: Portál, 2001. ISBN 807178
  20. -445-1.
  21. Vaníček, J. (2001). Dynamická geometrie. [online], 2001. Retrieved from
  22. http://www.pf.jcu.cz/cabri/temata/dynamgeo/dyngeo.htm.
  23. Vaníček, J. (2009). Počítačové kognitivní technologie ve výuce geometrie. Praha: UK Pedagogická fakulta. ISBN 978-80-7290-394-8.
  24. Vaníček, J. (2000). Kognitivní technologie. [online], 2000. Retrieved from
  25. http://eamos.pf.jcu.cz/amos/kat_mat/externi/kat_mat_9782/k11.htm.