JTIE 2015, 7(1):55-69 | 10.5507/jtie.2015.004

MANAGING THE PROCESS OF TEACHING BY THE ADAPTIVE COMPUTER SYSTEM

Zdeňka KRIŠOVÁ, Miroslav POKORNÝ
Moravská vysoká škola Olomouc

The aim of the current pedagogical research is to design and then verify in practice a holistic process of individual personalized education with the support of modern information technology. These complex adaptive models of teaching has striven to come as close to the needs and abilities of each student as possible in order to ensure the most efficient and fastest acquisition of required knowledge in the studied field. This paper presents a structure of the adaptive educational system which uses fuzzy expert modules to formalize the decision-making functions of a teacher and includes two adaptive loops which implement the adaptation of study materials according to the student's learning style and knowledge and modify his/her learning procedure.

Keywords: adaptive educational system, learning style, evaluation, study materiál

Received: February 16, 2015; Accepted: May 25, 2015; Published: June 1, 2015

Download citation

References

  1. Bajraktarevic, N., Hall, W., & P. Fullick. (2003). Incorporating learning styles in hypermedia environment: Empirical evaluation. Proceedings of the Workshop on Adaptive Hypermedia and Adaptive Web-Based System. pp. 41-52. Nottingham, UK.
  2. Brusilovsky, P. (2003). From Adaptive Hypermedia to the Adaptive Web. Mench & Computer. Interaktion in Bewegung. pp. 21-24. Stuttgart: B. G. Teubner.
  3. Buckley, J. J. & W. Siler. (2005). Fuzzy Expert Systems and Fuzzy Reasoning. Theory and Applications. United States: John Wiley & Sons Inc.
  4. Bureš, M., & JELÍNEK, I. (2004). Adaptivní webové systémy v e-learningu. In Belcom´04. Praha: ČVUT, s. 223-226.
  5. Dvořák, A., Habiballa, H., Novák V. & Pavliska. (2003). The concept of LFLC 2000 - its specificity, realization and power of applications. Computers in Industry. Vol. 51, No 3, pp. 269-280. Go to original source...
  6. Felder, R. M. & Silverman, L.K. (1988). Learning and Teaching Styles in Engineering Education. In Journal of Engineering Education, Vol. 78, No 7, pp. 674-681.
  7. Felder, R. M. & Soloman, B. A. (2004). Index of Learning Styles. Retrieved June 25, 2013. from http://www.ncsu.edu/felder-public/ILSpage.html.
  8. Krišová, Z. & M. Pokorný. (2013). Diagnostics of a student's learning style with the use of modern information technologies. In The New Educational Rewue, Vol 34, No 4. pp. 174-187. Torun, Polsko: Wydawnictwo Adam Marszalek.
  9. Pokorný, M. & Krišová. (2011). Teorie systémů 2. Olomouc: MVŠO, s. 86.
  10. Kostolanyová, K. (2012). Teorie adaptivního e-learningu. Ostrava: Ostravská univerzita. s. 118.
  11. Liu, H. (Ed.). (2010). Pedagogical Strategy Model in Adaptive Learning Systém Focusing on Learning Styles. Entertainment for Eduacation. Digital Techniques and Systems. Lecture Notes in Computer Science. Spring-Verlag Berlin: Heidelberg, pp. 156-164.
  12. Mareš, J. (2004). E-learning a individualni styly učeni. Československá psychologie. Ročník 4, Číslo 3. s. 250.
  13. Matlab - The MathWorks-MATLAB and Simulink for Technical Computing. (2012). Retrieved July, 7. from http://www.mahworks.com.
  14. Novák, V., Perfiliova, I. & J. Močkoř. (1999). Mathematical Principles of Fuzzy Logic. Engineering and Computer Science. vol. 517. Boston, USA: Kluwer.
  15. Novotný, S. (2010). Individualization of teaching through e-learning: Development of Students' Learning Profile Questionnaire. Theoretical and Practical Aspects of Distance Learning. pp.105-116. Katowice, Polsko: Studio Noa.
  16. Paramythis, A. & Loidl-Reisinger, S. (2004). Adaptive Learning Environments and e-Learning Standards. In Electronic Journal of E-learning. Vol. 2, No 2.
  17. Riding, R. J. & Cheema, I. (1991). Cognitive styles - an overview and integration. In Educational psychology. Vol. 11, No 3-4. pp.193-215.
  18. Sternberg, R. J. & Grigorenko, E. L. (1999). Genetics and intelligence. In Journal of American Academy of Child and Adolescent Psychiatry, Vol. 38. pp.486-488.